

### In vitro ADME & PK

# P-glycoprotein Inhibition

## Background Information



'In vitro inhibition studies are recommended to investigate whether the investigational drug inhibits any of the transporters known to be involved in clinically relevant in vivo drug interactions'

<sup>4</sup>The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)

- P-gp is one of the most well-recognised efflux transporters expressed in many tissues including the intestine, brain and kidney¹.
- Inhibition of P-gp has shown to be responsible for several clinical drug-drug interaction. For example, clarithromycin can inhibit the transport of the P-gp substrate digoxin resulting in a clinically significant elevation of plasma exposure and a decrease in renal clearance<sup>2</sup>.
- The International Transporter Consortium<sup>1</sup>, the FDA guidance<sup>3</sup> and the EMA guideline<sup>4</sup> recommend investigating P-gp due to P-gp's clinical importance in the absorption and disposition of drugs.
- Cyprotex use MDCK-MDR1 cells to identify P-gp inhibitors using a range of test inhibitor concentrations in the presence of the clinically relevant probe substrate digoxin. This method conforms with the recommended methods within the International Transporter Consortium white paper¹, the FDA drug interactions guidance³ and the EMA drug interactions guideline⁴.

#### **Protocol**

#### **Substrate**

5 μM [<sup>3</sup>H]-Digoxin (clinically relevant substrate)

#### **Test Article Concentrations**

Seven point IC<sub>50</sub>

#### Direction

Unidirectional (basolateral to apical)

### Inhibitor Preincubation Time

30 min

#### **Incubation Time**

90 min

#### **Growth Period**

4 days

#### **Analysis Method**

Liquid scintillation counting

#### **Integrity Marker**

Lucifer Yellow

#### **Data Delivery**

IC<sub>50</sub> (derived from corrected B-A P<sub>app</sub>)

Interference at the level of ATP binding cassette (ABC) and other transporters is increasingly being identified as the mechanism behind clinically important drug-drug interactions<sup>5</sup>.

#### Table 1

Inhibition of P-gp-mediated digoxin transport by literature inhibitors.

| Inhibitor                        | Mean IC <sub>50</sub> ± Standard Deviation (n=3) |
|----------------------------------|--------------------------------------------------|
| Cyclosporin A (positive control) | 0.931 ± 0.0574                                   |
| Ketoconazole                     | 8.83 ± 4.09                                      |
| Verapamil                        | 54.7 ± 10.3                                      |
| Elacridar                        | 0.284 ± 0.0452                                   |

The MDCK-MDR1 cell test system using the P-gp substrate digoxin is able to correctly identify known literature P-gp inhibitors with a range of different potencies.

The incubation conditions have been fully characterised for our chosen P-gp substrate, digoxin, based on time linearity and chosen substrate concentration being at least ten-times lower than the reported  $\rm K_{\rm m}$  , and as such  $\rm IC_{\rm 50}$  equates to  $\rm K_{\rm l}$  (assuming competitive inhibition).

- <sup>1</sup> The International Transporter Consortium (2010) Nat Rev Drug Disc 9; 215-236
- Wakasugi H et al. (1998) Clin Pharmacol Ther 64; 123-128
- FDA Guidance for Industry In Vitro Drug Interaction Studies Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions (January 2020)
  The European Medicines Agency (EMA) Guideline on the Investigation of Drug Interactions (Adopted 2012)
- <sup>5</sup> Marchetti S et al. (2007) Oncologist **12**; 927-941

