In the quest to revolutionize immunotherapy, the identification of naturally presented peptides bound to HLA class I and II molecules from cancerous cells holds paramount importance. These peptides, crucial for developing immunotherapy-based treatments, also offer promising avenues for combating infectious diseases. Evotec's pioneering immunopeptidomics platform stands at the forefront, enabling the unbiased discovery of novel immunotherapeutic targets.
This comprehensive approach extends beyond cancer research, facilitating the identification of diagnostic and monitoring biomarker signatures across normal and altered cells in cohort studies. It sheds light on the intricate interplay between T cells and MHC-presenting cells, deepening our understanding of immunobiology.
Evotec's meticulously crafted experimental strategy, coupled with its state-of-the-art capabilities in high-end quantitative mass spectrometry, achieves unparalleled sensitivity. This precision is essential for distinguishing disease-specific neoantigens from their normally presented counterparts. By integrating whole exome sequencing and transcriptomics data, the platform empowers the discovery of neoepitopes, while advanced statistics and bioinformatics tools enable comprehensive data analysis and interpretation, facilitating peptide prioritization.
The platform's capabilities are exemplified by its ability to identify up to a thousand peptides per sample, providing direct detection of presented peptides, surpassing computation-intensive in silico predictions. Moreover, validation and accurate quantification of individual peptides are ensured through targeted mass spectrometry (PRM-MS).
In essence, Evotec's immunopeptidomics platform represents a transformative leap in the field, offering unparalleled insights into immunobiology and neoantigen identification, with profound implications for the development of immunotherapy-based treatments and the fight against various diseases.
For further inquiries, contact Evotec's experts at info@evotec.com or learn more here