Drug-induced cardiotoxicity may result from a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or from a structural change, resulting in damage to the cardiac tissue. In our research, the effects of 42 reference compounds in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were investigated in a combined risk assessment strategy. Functional cardiotoxicity was evaluated through kinetic monitoring of calcium transients (CaT), while structural morphology changes and gross cytotoxicity were assessed using high-content imaging (HCI) and cellular ATP measurements. In addition, whole genome high-throughput RNA-sequencing (ScreenSeq) was performed in matched-sister plates. Data were analysed to determine differentially expressed genes (DEGs) and any associated perturbed pathways.