Science Pool

Gene Therapy: The Future of Medicine

Posted by Evotec on Mar 10, 2021 5:04:00 PM

Curing paraplegia

In January 2021, researchers from Ruhr-Universität Bochum made headlines after publishing in Nature Communications that they had succeeded for the first time in enabling formerly paralyzed mice to walk. They had accomplished the feat by using gene therapy to transfer the gene for hyper-interleukin-6, a so-called designer cytokine, which does not occur in nature, to the brain of the animals. The gene was packed into Adeno-Associated Viruses (AAV) and the vector injected into the brain, where motoneurons and associated motion-related nerve cells started to produce this growth factor.

“Thus, gene therapy treatment of only a few cells stimulated the axonal regeneration of various nerve cells in the brain and several motor tracts in the spinal cord simultaneously,” said Dietmar Fischer, Professor at the Department for Cell Physiology at Ruhr-Universität Bochum and lead author of the study. “Ultimately, this enabled the previously paralyzed animals to start walking after two to three weeks. This came as a great surprise to us at the beginning, as it had never been shown to be possible before after full paraplegia.”

The development of gene therapy

This breakthrough, which might end paraplegia in injured humans, is just one of many successes accomplished with gene therapy. The approach has come a long way. Its basic concept – modifying human genes by introducing genetic material – was first proposed in 1972. After premature first attempts in the 1980s failed, the science greatly improved and in 2003 China took the lead by approving Gendicine, a recombinant Ad-p53 gene therapy for the treatment of head and neck squamous cell carcinoma (HNSCC)—a cancer that accounts for about 10% of the 2.5 million annual new cancer patients in China.

It took another 9 years until the EU followed with the approval of Glybera, a treatment for patients who cannot produce enough of an enzyme that is crucial for breaking down fat, and in 2017 the first gene therapies were approved in the U.S.: Luxturna to treat RPE65 mutation-induced blindness and Kymriah, a therapy for the treatment of B-cell acute lymphoblastic leukemia (ALL) which uses genetically engineered T cells of the affected patients. Since then, further gene therapies have been approved, e.g. Zolgensma and Patisiran, and hundreds of clinical trials are under way to test gene therapy as a treatment for genetic disorders, cancer, and HIV/AIDS.

The gene therapy market was valued at approx. $ 500 m in 2018 but is expected to reach > $ 5 bn by 2025 with an impressive CAGR of about 34%.

How does gene therapy work?

Gene therapies can work through several mechanisms, the replacement of a disease-causing gene with a healthy copy, inactivation of a disease-causing gene that is not functioning properly and the introduction of a new or modified gene into the body to help treat a disease. The latter approach was used in the study to heal paraplegic mice.

There are various methods for administering gene therapeutics. The most common approaches are the use of viral vectors (mostly AAVs and lentiviruses) to transfer the genes directly to the patient, or the modification of patient-derived cells in the lab with subsequent transfer of the modified cells back into the patient. Most approaches use performing gene insertions in vivo and ex vivo, respectively, but non-viral delivery systems are also being used.

Evotec´s gene therapy strategy

Evotec entered the gene therapy space in 2020 by establishing an alliance with Takeda, adding a team of 20 specialists by creating Evotec GT in Austria, where Takeda’s gene therapy operation GTCA (Gene Therapy Center Austria) is located.

Evotec GT is now an integral part of Evotec’s integrated drug discovery platform. Its services include

  • the design of state-of-the-art viral AAV vectors,
  • the generation of AAV material for research and non-clinical studies, 
  • in vitroand in vivo proof of concept studies for target validation including screening of drug candidates, as well as
  • the design, execution and interpretation of non-clinical gene therapy studies.

The services cover both in vivo and ex vivo gene therapy approaches. With this new unit, Evotec is now able to find the best potential drug candidate agnostic of modality for any given biology.

LEARN MORE

Tags: Blog, Biologics

Reducing the Cost of SARS-CoV-2 Therapies

Posted by Evotec on Mar 10, 2021 4:30:00 AM

Given the arrival of SARS-CoV-2 vaccines, why do we still need therapeutics?

After more than a year into the COVID-19 pandemic, vaccines against the new coronavirus are all over the news. However, there is still a long way to go until people have been vaccinated worldwide, and as yet it is not clear how long the protection will last and whether the different vaccines will protect against re-infection and/or infection against mutated viruses.

Therefore, it is clear that even in 2021 and beyond millions of people will get infected by the virus and many thousands will become critically ill and require medical treatment.

Strategies for making SARS-CoV-2 therapeutics broadly available

Similar to vaccines, biopharmaceutical companies all over the world are trying to develop medications to combat Sars-CoV-2 infections: some are trying to repurpose existing drugs, others are developing small molecules or biologicals such as antibodies against a variety of targets – viral as well as cellular.

Evotec is also participating in this worldwide effort – but with a twist. The goal is to develop a monoclonal antibody that is not only effective, but can also be produced at low cost so that it is ideally suited to be administered even in the world’s poorest countries. And if all goes well, Evotec will also provide small, efficient manufacturing sites that can be operated all over the world.

Already in April last year, Evotec´s U.S. subsidiary Just - Evotec Biologics, Inc. entered into a partnership with Ology Bioservices, Inc. to evaluate and characterize antibodies against SARS-CoV-2. A few months later, in July, Just – Evotec Biologics was awarded up to $ 18.2 m by the U.S. Department of Defense for the development and manufacturing of monoclonal antibodies that might be able to prevent or treat COVID-19. And in September last year, the Bill & Melinda Gates Foundation joined in by granting another $1.9 million to develop and manufacture monoclonal antibodies at lowest possible cost of goods for the prevention of severe COVID-19 in vulnerable populations in low- and middle-income countries.

The concept of decentralised, affordable drug manufacturing

Just – acquired by Evotec in 2019 – was founded in 2015 in Seattle by former Amgen employees with the goal to make the entire manufacturing process of biotherapeutic drugs more efficient and affordable – not only by lowering development costs, but also by establishing smaller, more efficient manufacturing sites. The initial therapeutic focus was on anti-infectives, as infections constitute the biggest problems in poor countries that often don’t have enough money to purchase lifesaving drugs or to support their manufacturing, so lowering the costs of developing and producing anti-infectives are of great importance.

To accomplish this goal, Just is using artificial intelligence and an entirely data-driven drug discovery and development process. Its J.DESIGN technology platform integrates the discovery and optimization of drug candidates, process and product development, and manufacturing with the goal of providing a product that can be manufactured at low cost of goods. Using large, diverse data libraries and machine learning, the platform from the outset screens and designs biologics that can be developed and manufactured under the most favourable development conditions.

The know-how of the company comprises cell line development, upstream bioreactor design (fed-batch or continuous), and the development of downstream purification, analytical methods, final drug product, formulation, and long-term storage.

Just – Evotec Biologics also has developed a small, flexible, low-cost facility solution to biotherapeutics manufacturing called J.POD. This facility can be installed easily wherever production is needed.

As infectious diseases are on the rise across the globe and SARS-CoV-2 will unlikely be the last pandemic affecting the human population, the approach developed by Just - Evotec Biologics will become even more important in the future.

Interested in learning more?

Just- Evotec Biologics´ technologies and services are being offered to clients and partners interested in the fast and cost-effective development of biologics.

LEARN MORE

Tags: Blog, Biologics, Anti-Infectives

Joint Webinar: Cell & Gene Therapies for Cancer

Posted by Evotec on Mar 9, 2021 9:57:45 AM

Tags: Oncology, Videos & Webinars, Biologics, IND Enabling Studies/Preclinical Development

How to Address the Challenges of Biologics Discovery and Development

Posted by Evotec on Mar 5, 2021 5:40:11 PM

Tags: Articles & Whitepapers, Biologics

Building Powerful Tools on an Organized Data Infrastructure

Posted by Evotec on Mar 5, 2021 5:38:59 PM

Tags: Posters, Biologics

Small-Scale Model for Studying Resin Interactions

Posted by Evotec on Mar 5, 2021 5:37:53 PM

Tags: Posters, Biologics

With Genetic Engineering, You Can Induce Cells to Make Drugs

Posted by Evotec on Mar 5, 2021 5:34:27 PM

Tags: Podcasts, Biologics

Innovative Technologies to Expand Access To Biotherapeutics Fact Sheet

Posted by Evotec on Mar 5, 2021 5:20:06 PM

Download this fact sheet to learn more about innovative technologies that dramatically expand global access to biotherapeutics including:

  • Machine learning derived human repertoire
  • Proprietary suite of predictive computational tools
  • Disposable technologies and intensified processes creating flexible, deployable and cost-effective manufacturing
Download 

Tags: Fact Sheets, Biologics

Designing Feature-Controlled Humanoid Antibody Discovery Libraries

Posted by Evotec on Mar 5, 2021 4:28:58 PM

Tags: Articles & Whitepapers, Biologics

Drug Discovery Insights: Antisense Oligonucleotide Drug Discovery

Posted by Evotec on Mar 4, 2021 9:24:13 PM

Tags: Articles & Whitepapers, Biologics