Science Pool

Evotec

Recent Posts

Physicochemical Profiling Fact Sheet

Posted by Evotec on Oct 1, 2024 11:18:19 AM

Physicochemical properties provide an insight into the structure of a molecule and its physical behavior within a system, and they can influence its dissolution, absorption, distribution, metabolism, elimination, protein affinity and toxicity. Early assessment of a molecule's physicochemical properties supports rational compound design within drug discovery.

Read our fact sheet to learn more about our physicochemical profiling services.

DOWNLOAD

Tags: Fact Sheets, ADME/DMPK, Cyprotex, Modelling and Simulation

Why to choose Continuous Biomanufacturing over Fed-batch

Posted by Evotec on Sep 20, 2024 2:12:52 PM

In this article we examine 6 reasons.

Tags: Featured

How Just-Evotec Biologics’ J.MD Molecular Design Service Helps Derisk CMC Efforts

Posted by Evotec on Sep 20, 2024 2:00:08 PM

In the complex world of biopharmaceutical development, Chemistry, Manufacturing, and Controls (CMC) activities are critical yet often fraught with challenges. Just-Evotec Biologics offers a suite of innovative solutions designed to mitigate these risks, with their J.MD™ Molecular Design service standing out as a key player in this arena.

 

The Role of J.MD™ Molecular Design

The J.MD™ Molecular Design service is part of Just-Evotec Biologics’ comprehensive J.DESIGN™ platform, which integrates advanced computational tools and high-throughput methodologies to streamline the development process. This service focuses on selecting an optimal lead and optimizing the molecular design of biologics to ensure manufacturability, stability, and efficacy from the earliest stages of development.

 

Evaluating Early Team Supply Material

One of the primary ways J.MD™ helps derisk CMC efforts is by evaluating early team supply material produced in stable pools. This early biophysical characterization is crucial for identifying potential issues that could arise later in the development process. By addressing these issues upfront, Just-Evotec Biologics helps partners avoid costly and time-consuming setbacks.

 

Derisking the CMC Journey

The CMC journey involves numerous stages, from initial development to production-scale manufacturing. Each stage presents unique challenges that can impact the overall success of a biopharmaceutical product. Just-Evotec Biologics’ J.MD™ service helps derisk this journey in several ways:

  • Predictive Computational Tools: The Abacus™ tool within the J.MD™ toolbox uses predictive algorithms to assess the manufacturability and stability of different molecular variants. This allows for the selection of lead candidates with optimal properties, reducing the risk of failure in later stages1.

 

  • High-Throughput Screening: By leveraging high-throughput screening methods, J.MD™ can rapidly evaluate multiple variants, accelerating the development timeline and ensuring that only the most promising candidates move forward2.

 

  • Integrated Development Approach: The J.MD™ service is part of a larger, integrated approach that includes cell line development, process optimization, and continuous manufacturing. This holistic approach ensures that all aspects of the CMC process are aligned and optimized for success3.

 

  • Regulatory Support: Just-Evotec Biologics also provides comprehensive regulatory support, helping partners navigate the complex landscape of biopharmaceutical regulations. This support is crucial for ensuring that products meet all necessary standards and can be brought to market efficiently4.

 

Conclusion

In summary, Just-Evotec Biologics’ J.MD™ Molecular Design service plays a pivotal role in derisking CMC efforts for biopharmaceutical partners5. By evaluating early team supply material, leveraging predictive computational tools, and integrating a comprehensive development approach, J.MD™ helps ensure that the CMC journey is as smooth and successful as possible. This not only saves time and resources but also increases the likelihood of bringing effective and safe biopharmaceutical products to market.

 

Learn More

 

References

  1. Just-Evotec Biologics’ Abacus™ tool 
  2. High-throughput screening methods
  3. Integrated development approach
  4. Regulatory support
  5. Derisking CMC efforts for biopharmaceutical partners

Tags: Oncology, Blog, Formulation & CMC, Biologics, Age-Related Diseases, IND Enabling Studies/Preclinical Development, Immunology & Inflammation

Cardiotoxicity Risk Assessment using AI/ML and In Vitro Assays

Posted by Evotec on Sep 17, 2024 3:35:05 PM

Cardiotoxicity is defined as toxicity that affects the heart. Drug-induced cardiotoxicity remains an important cause of pre-clinical and clinical drug failure. At Cyprotex, we are developing cutting-edge strategies to effectively predict toxicities at an early stage in the drug development process to guarantee the progression of safe novel pharmaceuticals and reduce later-stage attrition.

The mechanisms by which drugs can induce cardiotoxicity are diverse, ranging from functional (acute alteration of the mechanical function of the myocardium) to structural impairment (morphological damage to cardiomyocytes), and the clinical manifestations are wide-ranging, spanning from arrhythmia to myocardial dysfunction, to terminal heart failure. Cardiotoxicity generally results from the disruption of key cardiomyocyte processes affecting contractility, electrophysiology (ion channel trafficking), mitochondrial function, growth factors and cytokine regulation. Consequently, our assays have been developed to cover various readouts by combining multiple approaches to obtain a complete understanding of toxic effects.

At the 58th Congress of the European Societies of Toxicology (Copenhagen, Eurotox 2024), we presented our latest work in cardiotoxicity prediction in the form of a poster, titled: “High-throughput transcriptomics combined with in vitro assays for cardiotoxicity risk assessment and mechanistic understanding”. Here, we investigated the effects of 148 reference compounds, (including structural and/or functional cardiotoxicants as well as non-cardiotoxicants) on human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) using high-throughput transcriptomics assessing the entire transcriptome (HT-transcriptomics), high-content imaging (HCI) and kinetic monitoring of calcium transients (CaT). Our compound set covered a broad range of mechanisms of action including ion channel inhibitors (Na+, K+, Ca2+), receptor modulators (adrenergic, dopamine, serotonin, histamine, acetylcholine, glucocorticoid, sulfonylurea), enzyme activities (COX, phosphodiesterase) and DNA metabolism.

Calcium transients, assessed by fast kinetic fluorescent readings, allowed a series of Ca2+ peak parameters to be studied including amplitude, frequency, full rise and decay time and peak width, which taken together revealed the effects of compounds on cardiomyocyte contraction. Since the calcium transients are closely associated with muscle contraction and ventricular action potentials, they can help us understand the in vivo cardiotoxicity effects of some compounds including electrocardiogram alterations such as QT interval prolongation. Additionally, HCI was used to assess any structural damage to the cardiomyocytes upon analysis of nuclei impairment, calcium homeostasis and mitochondrial function. Finally, HT-transcriptomics shed light on the transcriptional responses triggered upon compound treatment, which were further analysed for pathway enrichment and differential gene expression.

This multi-parametric approach allowed the identification of the readout showing the lowest minimum effective concentration (MEC). Compounds were then classified as cardiotoxic if the MEC value was below a specific maximum plasma concentration (Cmax) threshold calculated using in vivo literature cardiotox classifications. Additionally, AI/Machine Learning (ML) models were developed to predict cardiotoxicity using a 20x Cmax threshold and a tox score threshold. This allowed the classification of compounds as cardiotoxic if the true Cmax (historical in vivo response) was above the predicted safe Cmax, giving excellent prediction metrics with 78.7% sensitivity, 86.7% specificity and 81.4% accuracy.

Finally, testing dynamic Cmax thresholds and different assay combinations proved useful to effectively predicting cardiotoxicity risk with excellent accuracy, whilst assigning more weight to specificity over sensitivity to avoid losing valuable drug candidates due to false-positive risks. The best predictions were achieved by combining HT-transcriptomics AI/ML modelling (20x Cmax), HCI (1x Cmax) and CaT (2x Cmax) endpoints, with 85.9% sensitivity, 84.1% specificity and 85.3% accuracy.

Future work will involve further expansion of our reference compound list to cover an even larger range of mechanisms and chemical space, and to explore the transcriptomics pathway endpoints by performing a Point of Departure (PoD) using Benchmark Dose (BMD) analysis approach, for both hiPSC-CMs and organotypic 3D models which are likely to be more representative of the in vivo tissue structurally and functionally.

Interested in learning more?

Contact us to discuss your project.

Request the poster

Tags: Blog, Toxicology & Safety, Cyprotex

In Vitro Permeability Fact Sheet

Posted by Evotec on Sep 16, 2024 2:33:59 PM

Membrane permeability plays an important role in oral absorption. Cyprotex offers a range of in vitro permeability assays to understand passive permeability or transporter-mediated effects. 

Read our fact sheet to learn more about our in vitro permeability services.

DOWNLOAD

Tags: Fact Sheets, ADME/DMPK, Cyprotex

The Power of Harnessing the Immune System: Immuno-Oncology as a Game Changer in Cancer Treatment

Posted by Evotec on Sep 12, 2024 4:04:57 PM

In the evolving landscape of cancer treatment, Immuno-Oncology (IO) has been at the forefront for the past 15 years, revolutionizing our approach to battling this formidable disease. Immunotherapy, which harnesses the body's immune system to fight cancer, offers hope where traditional therapies have often fallen short. For instance, in advanced stage IV melanoma, the median survival has improved from 6 months to 6 years over the past decade thanks to immunotherapy.

However, the journey from discovery to clinical application is fraught with challenges. Why do some patients respond to immunotherapy while others do not? What opportunities exist for developing the right combination therapies? How can we better select the right cancer indications for a particular IO target? How can we ensure the success of these treatments across diverse patient populations?

At Evotec, our immunologists are equipped with the expertise and experience to support your IO projects from target identification through to clinical trials. Whether you require a comprehensive and strategic partnership or targeted support at critical stages, our capabilities can synergize with your efforts to make a tangible difference.

Comprehensive Support Across the Immuno-Oncology Spectrum

In-depth Immunology Expertise

Our team’s knowledge spans from innate to adaptive immunity, providing a robust foundation for developing cutting-edge cancer immunotherapies. We offer:

●    Genetic Engineering of Primary Immune Cells: Optimizing target validation for effective therapy development.
●    Bespoke In Vitro Immunological Assays: Custom-designed assays to evaluate immune responses and the potency of immunotherapeutic candidates.
●    Single-Cell Level Immunotherapy Assessment: Utilizing Immunological Synapse technology for precise drug discovery.

Preclinical Animal Models Dedicated to IO

Moving forward with candidates within the drug discovery journey requires robust and tailored in vivo models for IO:
●    Syngeneic Mouse Models: Developed with various tumor-immune phenotypes and responsiveness to checkpoint inhibitors; these models help in assessing therapeutic efficacy, modulation of the immune response (tumor microenvironment and periphery), as well as pharmacodynamics features (PK/PD).
●    Humanized Mouse Models: Presenting a functional human immune system with the possibility of xenografting a human tumor. These models are pivotal for particular therapeutic modalities such as biologic therapeutics (e.g., immune cell engagers) or cell therapies; they could also be interesting for early toxicology studies looking at immune-related adverse events.

Translational Validation Using Relevant Patient Samples

To bridge the gap between in vitro models done with primary human immune cells isolated from healthy donors and in vivo models in the drug discovery process:
●    Broad Clinical Network: Collaborations with hospitals and clinicians to select the relevant samples for the project.
●    Translational Validation of Therapies: Access to cancer patient samples ensures that therapies are effective in a patient context.
●    Enhanced Target Validation: Possibility to develop on-target biomarker assays or validate target expression in a particular indication.

Advanced Technological Integration

Our approach integrates cutting-edge technologies to de-risk your drug development strategy:
●    High-Throughput Imaging and Analysis: Tools like the ImageStream X and Operetta provide high-speed, high-resolution insights into immune cell interactions.
●    Complex Flow-Cytometry and Functional Assays: These analyses on fresh human tumor samples facilitate target engagement validation and biomarker identification.
●    Omics Technologies: Including scRNAseq, TCR sequencing, and proteomics, to uncover novel biomarkers and therapeutic targets.

Precision Medicine and Biomarker Strategies

By incorporating biomarker strategies early in the discovery process, we enhance the understanding of disease mechanisms and improve patient stratification for clinical trials. Our efforts in precision medicine are aimed at identifying the right therapeutic interventions for the right patients, thereby increasing the likelihood of clinical success.

The Evotec Advantage

Evotec’s experienced IO team supports your projects from the lab bench to the patient bedside. Our comprehensive services include:
●    Functional In Vitro Immunological Assays: Supporting programs for small molecules, biologics, and cell therapies.
●    In Vivo Rodent Models: Essential for preclinical testing of therapeutic efficacy and safety.
●    Translational Research and Patient Sample Access: Enhancing the relevance and translatability of preclinical findings.

Driving Success in Immuno-Oncology

Our integrated approach, combining deep immunological expertise with advanced technologies and translational capabilities, ensures that we address the complex challenges of IO drug discovery. By partnering with Evotec, you gain access to a wealth of knowledge and resources designed to propel your project forward, from the initial stages of discovery to the clinical validation of novel therapies.
For more information on how Evotec can support your Immuno-Oncology projects, visit our website or contact us at info@evotec.com.

Conclusion

The revolution in cancer immunotherapy is just beginning, and the journey to effective treatments requires collaboration, innovation, and expertise. At Evotec, we are committed to advancing the field of Immuno-Oncology, providing the tools and support necessary to transform groundbreaking discoveries into life-saving therapies. Join us in this mission and let’s make a difference in the fight against cancer.
Contact us today to speak with one of our immunologists and explore how we can progress your IO projects together.

Learn More

Tags: Oncology, Blog, Biologics, In vitro Biology, Immunology & Inflammation, Rare Diseases, in vivo

The Cost Efficiency of Continuous Biomanufacturing for First-in-Human Biopharmaceutical Supply

Posted by Evotec on Sep 9, 2024 2:33:28 PM

In the dynamic world of biopharmaceuticals, cost efficiency is a critical factor, especially for start-up companies navigating the complex landscape of drug development. Continuous biomanufacturing is an innovative approach that has garnered significant attention for its potential to significantly reduce the cost of commercial biologics. Less often discussed, however, is the potential for continuous biomanufacturing platforms for first-in-human (FIH) clinical trials. This method not only streamlines the production process but also offers substantial savings during the manufacture of material intended for early phase antibody development, making it an attractive option for emerging biotech firms.

 

What is Continuous Biomanufacturing?

Continuous biomanufacturing is a process where the production of biopharmaceuticals occurs in a seamless, ongoing manner, as opposed to traditional batch manufacturing, which involves discrete, separate production cycles. This continuous approach leverages advanced technologies and automation to maintain a steady flow of production, ensuring consistent quality and efficiency.

 

Cost Efficiency in Early-Stage Clinical Trials

One of the most compelling advantages of continuous biomanufacturing is its ability to produce large quantities of biopharmaceuticals in a single run. This is particularly beneficial for early phase clinical trials, where the initial supply can often be enough to cover subsequent Phase 2a and Phase 2b clinical studies. Here’s why emerging biopharmaceutical companies benefit:

  1. Elimination of Additional Batches: Traditional batch manufacturing often requires multiple production runs to meet the demands of Phase I and II clinical trials. Each additional batch incurs significant costs, including raw materials, labor, and quality control. Continuous biomanufacturing, however, can produce a large enough supply in one go, eliminating the need for these extra batches.

  2. Consistent Quality: Continuous processes are designed to maintain a high level of consistency and offer more levers to tightly control critical quality attributes than fed-batch processes. Supplying multiple clinical trials from the same lot of material ensures a perfect level of consistency which is crucial for regulatory approval and patient safety, further streamlining the development process.

  3. Time Savings: By producing all necessary material in one continuous run, companies can significantly reduce the overall time required to manufacture the material they need for clinical trials. They avoid the challenge of finding available slots in their CDMO’s production schedule. This accelerates the overall timeline for clinical trials, allowing for faster progression through the development pipeline.

 

Financial Impact for Start-Ups

For start-up companies, the financial implications of continuous biomanufacturing are profound. The cost savings from eliminating additional batches can amount to millions of dollars. These funds can then be redirected towards other critical areas of drug development, such as:

  1. Research and Development: Investing in expanding the pipeline of new candidate biopharmaceuticals. 

  2. Clinical Trials: Initiating additional clinical studies for other disease indications. 

  3. Extending the funding runway: Providing the company with the longest possible time before it needs to raise additional funding. 

 

Learn More

Tags: Oncology, Blog, Formulation & CMC, Biologics, Immunology & Inflammation, Rare Diseases, Clinical Development

Regulatory Insights for Converting Batch to Continuous Biomanufacturing Processes

Posted by Evotec on Sep 4, 2024 2:39:27 PM

Biopharmaceutical companies increasingly want to convert fed-batch manufacturing processes to continuous platforms. We teamed up with GLOBAL Regulatory Writing & Consulting for this whitepaper so that you can learn:

  • How to meet regulatory expectations when switching to continuous manufacturing
  • The importance of appropriate risk assessments
  • How to demonstrate comparability with previously manufactured material

Learn More

Tags: Oncology, Articles & Whitepapers, Biologics, Immunology & Inflammation, Rare Diseases

Biologics Bottlenecks Pt 2: Benefits of Continuous Manufacturing

Posted by Evotec on Sep 4, 2024 1:46:46 PM

From Batches to Brilliance: The Benefits of Continuous for Commercial Manufacturing

As we covered in the first blog of this series,  biotherapeutics sponsor companies face numerous challenges in process development and manufacturing. This largely comes down to the overwhelming reliance on fed-batch processes in the biologics industry, which bring lengthy production timelines, process risks, and supply chain vulnerabilities. These issues contribute to the high cost structure of biologics and limit the accessibility of these vital therapies worldwide.

Continuous manufacturing is a rapidly emerging alternative production process to fed-batch processing. Biological products are produced in an uninterrupted flow, resulting in a steady and consistent output of product. This approach addresses many of the challenges with fed-batch systems, including: 

  • Reduced process costs and lower cost of goods manufactured (COGM)
  • Scalability and adaptability to fluctuating demands
  • Fewer process and scalability risks

Read on as we explore these benefits of continuous manufacturing for commercial manufacturing, describing how they can address the high cost structure associated with biologics, and help to meet the rising global demand for these life-saving therapies. 

 

Cost reduction

Continuous manufacturing can reduce the COGM by up to 75% compared to traditional fed-batch processes (1), while also achieving 10-fold higher productivity (Figure 1). 


Productivity of a fed-batch process compared with a continuous approach-1

Figure 1: Productivity of a fed-batch process compared with a continuous approach. 

 

This is partly achieved through workflow automation, which minimizes labor costs while improving production efficiency (Figure 2). Additionally, compared with fed-batch units that require large facilities to store product intermediates, continuous operations are highly intensified and have a much smaller facility footprint, further reducing operational costs. Continuous operations also enable manufacturers to optimize resource use and reduce waste, leading to additional cost savings. 

Unit operations and labor resources needed to run a continuous process compared to traditional fed-batch process

Figure 2: Unit operations and labor resources needed to run a continuous process compared to traditional fed-batch process

 

Scalability and adaptability

A continuous approach allows for a much more agile process, driven by greater scalability and adaptability. For instance, J.POD® biomanufacturing facilities from Just – Evotec Biologics support throughput from less than 10 kg to over 2,000 kg per year of protein-based biologics including mAbs and biosimilars. Production can be rapidly scaled up by increasing bioreactor numbers and extending run times with intensified continuous manufacturing technology. This enables manufacturers to adjust production levels quickly in response to market demand. 

How Just – Evotec Biologics platform steady-state intensified continuous manufacturing process can be scaled

Figure 3: How Just – Evotec Biologics’ platform steady-state intensified continuous manufacturing process can be scaled

 

Reduced risk

Continuous manufacturing reduces risks by ensuring consistent product quality. A DoE approach can be used to fine tune product quality attributes (PQAs) during development and advanced monitoring in production can maintain process consistency. This consistency is crucial for reducing regulatory risks and ensuring the efficacy and safety of biologics. 

This innovative manufacturing approach also enhances supply chain and financial security. With a smaller facility footprint and reduced operational costs, the financial risk for sponsor companies is substantially reduced. The modular design of facilities like J.POD allows for rapid deployment and scaling, mitigating geopolitical disruptions and financial risks associated with traditional fed-batch processes.

Making the transition is easier than you think. Explore the benefits and the process in more detail in our whitepaper

 

Unravelling the blueprint for success 

Transitioning to continuous manufacturing for commercial supply, in modular facilities like J.POD, offers a robust, cost-effective, and adaptable solution to address the unmet demand for biologics globally. Yet despite the clear benefits of continuous manufacturing, many manufacturers have yet to make the transition from fed-batch systems. This is often due to a lack of understanding of regulatory uncertainties, deployment pathways, and process development activities. 

Just – Evotec Biologics leverages over a decade of expertise in continuous manufacturing to help clients convert their fed-batch processes to its continuous manufacturing platform ready for commercial production. Commercial supply runs with its continuous manufacturing platform can be performed within one of its J.POD biomanufacturing facilities. These modular, scalable facilities are designed to offer the following benefits: 

  • Maximized yields and cost efficiency – J.POD facilities utilize intensified continuous perfusion culture supporting high cell densities and product yield. The facilities also minimize operational costs through workflow automation, intensified bioprocessing, optimized resource use, and more.
  • Rapid deployment and advanced agility – J.POD facilities are built using modular cleanroom pods that can be swiftly deployed and assembled. This design allows for flexible and scalable manufacturing capacity, enabling the facility to adapt quickly to changing production needs.
  • Risk resilience – With established facilities in the US and Europe, J.POD mitigates the risk of geopolitical or supply disruptions. These facilities are standardized in design and operation, allowing for seamless process transfer between sites. 

 

Discover the full benefits of J.POD facilities 

 

References

1. Garcia, F.A. and Gefroh, E. Reducing biopharmaceutical manufacturing costs through continuous processing in a flexible J.POD® facility. Drug Discovery Today. (2023); 28 (7): 103619. https://doi.org/10.1016/j.drudis.2023.103619 

Tags: Blog, Formulation & CMC, Biologics, Immunology & Inflammation, Clinical Development

Transporter Inhibition Fact Sheet

Posted by Evotec on Aug 30, 2024 4:41:14 PM

Understand if your investigational drug has the potential to be a perpetrator (precipitant) of transporter-mediated drug-drug interactions by evaluating if it is an inhibitor of drug transporters.

Read our fact sheet to learn more about our transporter inhibition service.

DOWNLOAD

Tags: Fact Sheets, ADME/DMPK, IND Enabling Studies/Preclinical Development, Cyprotex