Science Pool

Improving Drug Safety with Transcriptomics

Posted by Evotec on Jul 19, 2022 5:09:05 PM

According to a study from 2020, a total of 133 drugs were withdrawn from the market due to safety reasons between 1990 and 2010. Major causes were hepatotoxicity (27.1%), cardiac disorders (18.8%), hypersensitivity (12.8%), and nephrotoxicity (9.8%), accounting for 69.2% of all drugs withdrawn. In most cases, these withdrawals were initiated because of spontaneous reports and/or case reports. Another study looking into drug withdrawals between 1953 and 2013 revealed that 18% of drug withdrawals from the market in this period were due to liver damage.

Add to these withdrawals of marketed drugs the attrition rate of drug candidates in clinical trials: 90 percent of all drug candidates fail in clinical trials, and 30 percent of these failures are due to unmanageable toxicity issues.

These failures occur despite thorough preclinical work and intensive animal studies. It is estimated that only 50% of the compounds that cause liver toxicity in humans are detected by animal studies. Furthermore, some adverse reactions or idiosyncratic toxic effects are typically not detected until the drug in question has gained large exposure in a broad patient population.

Interestingly, a study evaluating the attrition of drug candidates from AstraZeneca, Eli Lilly and Company, GlaxoSmithKline and Pfizer came to the conclusion that there is a strong link between physicochemical properties of compounds and clinical failure due to safety issues. The results also suggest that further control of physicochemical properties is unlikely to have a significant effect on attrition rates and that additional work is required to address safety-related failures.

These failures are not only costly (according to the FDA, drug development takes over 10–15 years with an average cost of over $1–2 billion for each new drug to be approved), but are also putting the health and the life of patients in danger.

Consequently, Cyprotex and its parent company Evotec are very focused on assessing toxicology issues from the very beginning of its drug R&D process and have invested a significant amount of time and resources to expand its technologies for the toxicological evaluation of drug candidates.

“The idea is to make better informed decisions earlier in your discovery campaign when you can select potentially safer compounds, rather than finding a safety liability later on,” says Paul Walker PhD, Vice President, Head of Toxicology at Cyprotex, in Cheshire, UK.

This improved discovery and selection is implemented by Cyprotex by using the unbiased view of transcriptomics and its potential to predict drug-induced toxicity. Transcriptomics involves sequencing thousands of mRNA molecules to identify which processes are active in the cell and allows for a better understanding of the cell’s reaction to known and novel drugs.

This is by no means a purely academic endeavour. As an example, the Cyprotex team demonstrated via transcriptomics it was able to identify problems in liver cells treated with fasiglifam, a promising diabetes drug candidate, which was withdrawn from late-stage clinical trials by its developer, following signs of liver damage in trial participants. This example proves that transcriptomics could have raised a red flag during preclinical development and might have saved hundreds of millions of dollars.

“Our studies have found potential effects on mitochondrial function, which were previously missed in preclinical studies” says Walker.

Therefore, transcriptomics has the potential to supplement or reduce in vivo toxicology studies by effectively identifying safety issues early in drug development, saving time and money — and animal testing.

Sophisticated Human Cell-Based Models

A key advantage of transcriptomics is its use of human cells and Evotec as well as Cyprotex are not just looking at 2D cell cultures, but investigating 3D organoids. These structures formed of thousands of cells that mimic organ-specific tissues are much closer to the real organ and have valuable features: For example, 3D-organoids of the heart exhibit regular contractions, beating like a living heart, and liver organoids secrete typical liver enzymes for days.

“On top of that, a 3D system allows repeat dosing, mimicking dosing regimens in vivo and potentially helps to detect effects due to toxic metabolites,” says Walker.

As they are small, the organoids can be placed in 384-well plates and individually molecular barcoded for simultaneous sequencing. This combination of miniaturization and high-throughput screening is implemented in Evotec’s EVOpanOmics platform and allows a wider adoption of transcriptomics in preclinical toxicology studies allowing for the repeat testing of dozens or even hundreds of compounds at several doses and in multiple organs.

“People have thought about using transcriptomics for toxicology before, but it was always a numbers game,” explains Rüdiger Fritsch PhD, Principal Scientist and Project Lead for EVOpanOmics. “For any compound that’s a real troublemaker, the evidence will show up in the transcriptomics data if you profile it in a relevant model. You just need to test appropriate dosing scenarios with the breadth of genome-wide off-target effects so that you have a chance to find it.”

Complex Analysis of Transcriptomics Data

Evotec, in conjunction with Cyprotex, offers transcriptomics services to drug developers and carries out the entire process in-house, from growing the organoids to sequencing and analysis. This streamlined process allows its researchers to screen hundreds of compounds a day, each delivering tens of thousands of data points on RNA levels. To analyze all of these vast amounts of data, Evotec has developed a software platform called EVOpanHunter that allows among others the analysis of these transcriptomics in an interactive manner.

“We want to democratize data analysis for the biologists who know the biological pathways and processes, without them needing to rely on additional experts from the bioinformatics department for routine tasks,” says Carla Tameling PhD, Head of Sales and Application for EVOpanHunter at Evotec.

On top of the interactive multi-omics analysis platform machine learning is used to trawl through this immense amount of data in order to find specific patterns hinting for toxicological effects and alert the researchers to dig deeper. “The more data we get, the harder it is for a human to dig through it all,” adds Tameling. “Transcriptomics is an unbiased view. You don’t need to define what to look at prior to your studies — you get all the data, and you might see things that you didn’t think would be relevant initially.”

From publically available sources, Cyprotex has compiled a broad and highly valuable transcriptomics reference database for drug-induced liver injuries.. Machine learning is being applied to predict whether a compound is likely to have issues by comparing the observed pattern of gene activity to the activity patterns of known toxic molecules. Furthermore, this is not restricted to hepotoxicity. Cyprotex is already building databases of other organs, such as heart, kidney and brain, using publicly available drug development trial results to select a broad space of reference comounds. “We’re running reference compounds from all kinds of sources where we know there are either late-stage clinical findings or withdrawals from the market,” states Walker.

Given the rapid advancements of the technology, it may be only a matter of time before transcriptomics and other omics technologies become a regulatory standard approach for preclinical toxicity testing.

Contact Us for More Information

Learn More

Tags: Blog, In vitro Biology, Toxicology & Safety, Modelling and Simulation

Combined treatment with a selective PDE10A inhibitor TAK-063 and either haloperidol or olanzapine at subeffective doses produces potent antipsychotic-like effects

Posted by Evotec on Jun 27, 2022 4:06:02 PM

Novel phosphodiesterase 10A inhibitor drugs, through a distinct mechanism on striatal dopamine receptors, could raise the possibility of producing an augmented pharmacological antipsychotic effects by a combination therapy with the standard antipsychotic drug.

TAK-063 is a novel phosphodiesterase 10A inhibitor which has been evaluated for this hypothesis. Results show that the use of TAK-063 can produce augmented antipsychotic-like activities in combination with antipsychotics without alteration of plasma prolactin levels and catalepsy

In this collaborative paper with Takeda, we demonstrate that:

  • Combined treatment with TAK-063 and either haloperidol or olanzapine leads to a significant increase in phosphorylation of glutamate receptor subunit 1 in the rat striatum.
  • TAK-063 enhances N-methyl-D-aspartic acid receptor mediated synaptic responses in rat cortical striatal slices in both direct and indirect pathway MSNs to a similar extent.
  • Co-administration of TAK-063 with haloperidol or olanzapine additively activated the indirect pathway, but not the direct pathway.
  • Combined treatment with TAK-063 and either haloperidol or olanzapine at subeffective doses produced significant effects on methamphetamine- or MK-801-induced hyperactivity in rats and MK-801-induced deficits in prepulse inhibition in mice.
  • TAK-063 did not affect plasma prolactin levels and cataleptic response from antipsychotics in rats.

DOWNLOAD

Tags: Neuroscience, Articles & Whitepapers, Hit & Target ID/Validation, In vitro Biology

High Density Multi Electrode Array: a new tool to monitor seizure-like activity evoked by different convulsant drugs

Posted by Evotec on Jun 27, 2022 3:59:39 PM

In this poster, presented at SfN 2018, Sessolo et al. present 3Brain high-density multi electrode array (HD-MEA) as a system to monitor and characterize seizure-like activity in hippo-cortical slices induced by different compounds.

The high system resolution allows to monitor in detail the entire slice and through the software showing the activity map (in real-time) the sign of compounds' action is easily found.

The technology allows to acquire Local Field Potential (LFP), Multi Unit Activity (MUA) and Single-Unit Activity.

DOWNLOAD

Tags: Neuroscience, Posters, Hit & Target ID/Validation, In vitro Biology

Purkinje cells firing recorded by a high density multi-electrode array: a new tool for compounds validation

Posted by Evotec on Jun 27, 2022 3:55:59 PM

This poster includes information about:

  • Functional brain slice electrophysiology by HD-MEA platform
  • Combined neuronal circuitry studies through functional brain tissue imaging
Initially presented at FENS 2018 by Ugolini et al., 3Brain high-density multi electrode array (HD-MEA) as a system for long lasting monitor and characterize spiking activity of hundreds Purkinje cells simultaneously by using different positive and negative Ca++-activated K+ channels. Responses can be evaluated though different analysis. It is a useful tool for compounds validation on cerebellar slices.

DOWNLOAD

Tags: Neuroscience, Posters, Hit & Target ID/Validation, In vitro Biology

RNA-Based Medicine: Expanding the Druggable Target Space to RNA

Posted by Evotec on Mar 29, 2022 1:10:45 PM

While the public has taken note of RNA-based medicine only with the advent of mRNA-based Corona virus vaccines, biopharmaceutical research and development has been working on mRNA-based medicine for almost two decades. Evotec also expanded the druggable target space to RNA and in the last years added considerable know-how in RNA-based medicine.

RNA is used by cells in multiple ways: mRNA is conveying genetic information from DNA to the ribosomes which also are made from RNA (ribosomal RNA), where another RNA species (tRNA) is transporting amino acids to the ribosomal apparatus so that a protein can be synthesized. In addition to mRNA, there are also shorter RNA molecules being used in the cell for the regulation of genes and entire genetic cascades.

This provides for plenty of potential interventions: antisense (ASO) and short interfering RNA (siRNA) can up or down regulate an RNA target, e.g., to block the translation of an unwanted or diseased protein or to suppress or stimulate the expression of genes. RNA can be targeted with (complementary) RNA, but it is also possible to alter or block the translation, re-locate or initiate RNA, degradation, etc. by small molecules interfering with the three-dimensional structure of RNAs or protein-RNA-complexes.

During our recent Innovation Week, Evotec experts Steffen Grimm, Group Leader, Hit ID & Biophysics, and Hilary Brooks, Senior Research Scientist, In Vitro Pharmacology, hosted a session called "The early bird catches the helix: Expanding the druggable target space to RNA".

In the session, they discussed how to:

  • Expand the potential for drugs targeting RNA to offer alternative solutions for diseases with otherwise undrugged targets
  • Target RNA providing highly specific solutions for protein removal, alternative splicing or pathway regulation via noncoding RNA
  • Use the small molecule RNA targeting platform to contribute to new opportunities for target identification and validation

RNA as Therapeutics
Using RNA as therapeutics is not trivial. Nucleic acids introduced from outside may trigger adverse reactions by the innate immune system. A lot of knowledge is necessary to ensure delivery, avoid degradation and inflammation and to fine-tune the stability and function of the molecules. RNA may also have off-target effects. To ensure efficacy and safety, monitoring these early on needs to be incorporated into the developmental workflow. High quality synthetic RNA is costly to make, therefore a scaleable process and the relevant analytics must be established early in the process to accompany both the discovery and development stages of research with quality test material; Eventually producing GMP grade RNA at a commercial scale (several hundred grams) for human administration.

Evotec already has integrated all capabilities under one roof, allowing for the complete preclinical data set, reduced transition times and efficient communication to the regulators. For antisense oligonucleotide therapy, efficient hit sequences that knock down target expression can be selected in a matter of weeks. Toxicity profiling is a priority to establishing final leads and, subsequently, project-specific dose, duration and delivery will be established using optimized backbone chemistry. Using its in-silico capabilities as well as iPSCs, animal models, transcriptomics, etc. Evotec is able to predict toxicity and efficacy, and de-risk unwanted immune stimulation as well as off-target effects. For manufacturing, Evotec is discovery-capable and already building medium-scale capacity (up to 50g) which will be ready by 2023.

For inhibiting the translational machinery, Evotec has established an RNA small molecule targeting platform and established in various case studies, molecules binding to RNA, and demonstrating a significant effect in vitro without affecting cell viability. Evotec’s capabilities also allow the creation of a representation of the 3-dimensional structure of the target complex and its interaction with the compounds.

Evotec’s experienced team of scientists with proven drug discovery and development expertise already have a track record of driving RNA targeting projects forward. Its integrated medicinal and computational chemistry capabilities, combined with bioinformatics, structural biology, pharmacology, and drug safety expertise allows for the identification and characterization of RNA target species and their modulation by different modalities. Partner projects can be driven all the way from target identification to IND and beyond. Evotec therefore is a low-risk outsourcing partner and a company continually investing in its platform to the benefit of the customer.

LEARN MORE

Tags: Oncology, Blog, Videos & Webinars, Hit & Target ID/Validation, In vitro Biology, IND Enabling Studies/Preclinical Development, In vivo Pharmacology

Anti-Infective Virology Fact Sheet

Posted by Evotec on Mar 8, 2022 4:53:46 PM

Download this fact sheet to learn more about Evotec's anti-infectives virology platform including: 

  • Full integration
  • Project based flexibility tailoring
  • Development of novel tools


DOWNLOAD NOW

Tags: Fact Sheets, In vitro Biology, Anti-Infectives

Integrative Analysis of Human Macrophage Inflammatory Response Related to Mycobacterium Tuberculosis Virulence

Posted by Evotec on Jan 11, 2022 4:36:26 PM

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, kills 1.5 to 1.7 million people every year. Macrophages are Mtb’s main host cells and their inflammatory response is an essential component of the host defense against Mtb. However, Mtb is able to circumvent the macrophages’ defenses by triggering an inappropriate inflammatory response. Understanding macrophage interactions with Mtb is crucial to develop strategies to control tuberculosis. The present study aims to determine the inflammatory response transcriptome and miRNome of human macrophages infected with the virulent H37Rv Mtb strain, to identify macrophage genetic networks specifically modulated by Mtb virulence.

LEARN MORE

Tags: Medicinal Chemistry, Articles & Whitepapers, In vitro Biology, Anti-Infectives, Immunology & Inflammation

Discovery of Pyrazolo[1,5-a]pyrazin-4-ones as Potent and Brain Penetrant GluN2A-Selective Positive Allosteric Modulators Reducing AMPA Receptor Binding Activity

Posted by Evotec on Dec 22, 2021 9:22:41 AM

N-Methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family and play a crucial role in learning and memory by regulating synaptic plasticity. Activation of NMDARs containing GluN2A, one of the NMDAR subunits, has been recently identified as a promising therapeutic approach for neuropsychiatric diseases such as schizophrenia, depression, and epilepsy.

Identification of a new hit for GluN2A PAMs is however difficult due to the similarity of PAM binding sites between GluN2A and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPARs), another member of the ionotropic glutamate receptor family.

In this collaborative publication with Takeda, we focus on:

  • Identification of an hit compound with moderate AMPAR-binding activity, though a Ca2+ influx-based high throughput screening campaign with a compound set including an internal AMPAR-focused compound library
  • The strategy using a structure-based drug design (SBDD) approach to minimize the AMPAR-binding activity while improving GluN2A activity
  • The use of the potent and brain-penetrable GluN2A-selective positive allosteric modulators GluN2A PAM discovered as in vivo tool exhibiting significant neuroplastic enhancement in the rat hippocampus 24h after oral administration, having potential application for cognitive enhancement in neuropsychiatric diseases

LEARN MORE

Tags: Neuroscience, Medicinal Chemistry, Articles & Whitepapers, In vitro Biology, Age-Related Diseases

Recombinase-based Targeted Integration Systems for Exogenous Protein Production

Posted by Evotec on Dec 14, 2021 6:37:44 PM

Stable expression of recombinant protein therapeutics in CHO cells often relies on random or semi-random genomic integration events which results in a widely heterogenous cell population. This leads to significant effort in clone screening during cell line development in order to identify clones with high expression, growth and product quality. 

In this publication, we focus on:

  • the development of two targeted integration systems that express high levels of recombinant protein in CHO cells by: 
    • the installation of rationally designed piggyBac-based chromosomal landing pads
    • the use of site specific recombinases including PhiC31 and CRE 
  • demonstration of the functional integration of several donor vectors encoding various therapeutic proteins including two monoclonal antibodies and one Fc-fusion molecule

LEARN MORE

Tags: Articles & Whitepapers, Biologics, In vitro Biology

Understanding the PK/PD Relationship: The Hollow Fibre Infection Model

Posted by Evotec on Nov 25, 2021 8:29:11 PM

The Covid-19 pandemic is a stark reminder that infectious diseases and their sometimes devastating effects will always have to be reckoned with. However, beyond Covid-19 a second global health crisis is emerging, and it is imperative that we act now to prepare for the increasing development of antimicrobial resistance (AMR) towards our currently existing arsenal of antibiotics.

The key to de-risking and expediting the development and approval of new antimicrobials is a detailed understanding of the relationship between the fate of the antimicrobial compound in the body: pharmacokinetics (PK), and the impact of exposure to the compound on the target microbe: pharmacodynamics (PD). This understanding is essential for development of optimal human dosing regimens, maximising efficacy and minimising the emergence of resistance. Only with this understanding will we mitigate the risk of clinical trial failure, and ultimately extending the clinical utility of a new antimicrobial in the face of increasing AMR.

Among the several non-clinical in vivo and in vitro models of infection which provide complementary information to understand this PK/PD relationship, the in vitro Hollow Fibre Infection Model (HFIM) is the most versatile. Evotec’s comprehensive HFIM capabilities combined with its drug development expertise and unique EvostrAIn™ collection of microbial pathogens provide a versatile in vitro PK/PD platform to de-risk and accelerate the development of antibacterial, antifungal and antiviral compounds.

The Hollow Fibre Infection System consists of two principle compartments:

  1. a central reservoir and associated tubing, which constitutes a circulating system, and
  2. a hollow fibre cartridge consisting of thousands of hollow permeable capillaries, or fibres, housing the bacteria, fungi or virus of interest

The HFIM is a dynamic model that is able to simulate almost any given concentration-time profile for an antimicrobial compound or combination of compounds, without the constraints of animal PK. The containment of the bacterial in the peripheral compartment of the hollow fibre cartridge means the system is able to simulate PK profiles with no bacterial cell washout. It is also suitable for simulated dose range fractionation studies and can determine resistance prevention exposure for any simulated PK profile. Combining the ability to run long-duration experiments with multiple drug infusion profiles means that the HFIM is especially well suited to the development of antimicrobial combination therapy against slowly replicating bacteria such as Mycobacterium tuberculosis, a view which is supported by the European Medicines Agency (EMA).

When should the Hollow Fibre Infection Model be used in the drug discovery process?

  • Early screening of compounds can de-risk future HFIM experiments.
  • Studies at the pre-clinical stage (pre-IND) will help to improve understanding of the PK/PD relationship. This is particularly important if an animal model is not available, or if the animal can’t tolerate the inoculum levels that need to be tested for example in resistance studies.
  • During clinical development the HFIM can help to inform trial design. Hollow fibre studies can be performed based on human exposure data to address discrepancies between clinical and pre-clinical findings.
  • Even after drug approval the HFIM can be used to expand the label or optimise the dosing regimens.

Evotec has established HFIM capabilities in state-of-the-art containment level 2 facilities, with a growing team of dedicated Hollow Fibre specialists. Providing full microbiological support to projects and aided by specialist bioanalytical and mathematical modelling and simulation teams, Evotec can offer a bespoke in vitro PK/PD service tailored to advance individual antimicrobial development programmes.

Learn more about Evotec's Hollow Fibre Infection Model by downloading our white paper

DOWNLOAD NOW

Tags: infectious diseases, Blog, In vitro Biology, Anti-Infectives, Antimicrobial resistance